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The following two theorems are well-known:

Theorem 1.1 (Sobolev Embedding). Suppose s > d/2, then

C0(Rd) ∩ L∞(Rd) ⊆ Hs(Rd),

and we have an estimate
||u||L∞(Rd) . ||u||Hs(Rd).

Theorem 1.2 (Sobolev Trace). Suppose s > 1/2. Let T : S(Rd) → S(Rd−1) denote the
restriction (or “trace”) map (Tu)(x) = u(x, 0). Then T extends to a continuous linear map
T : Hs(Rd)→ Hs−1/2(Rd−1).

Notice that in the case d = 1 (with the interpretation that F(R0) ∼= R whenever F is
some space, like F = L∞,S, Hs, etc.), the theorems state exactly the same thing. Taking
the trace d times, we also see that Theorem 1.2 implies Theorem 1.1, since we may of course
take the Trace along any hyperplane we like, not just the hyperplane xd = 0.

The proof of Theorem 1.1 is easy. Set 〈ξ〉 =
√

1 + |ξ|2. Then if u ∈ S(Rd),

2π|u(x)| =
∣∣∣∣∫ eixξû

∣∣∣∣ ≤ ∫ û〈ξ〉s〈ξ〉−s ≤ ||u||Hs(Rd)

(∫
〈ξ〉−2s dξ

)1/2

,

where we used the Cauchy-Schwartz inequality and the definition of Hs(Rd). This last
integral is finite since s > d/2. The full theorem now follows by taking the sup over all x
and observing the density S(Rd) ⊆ Hs(Rd).

The proof of Theorem 1.2 is only slightly harder and we refer the reader to [1, Proposi-
tion 3.8].

The question remains though, are the exponents in these theorems “the best?” It turns
out they are, are the purpose of this note will be to prove them. We will start off with
Theorem 1.1. The first thing to try is a scaling argument. For u ∈ S(Rd), we set uλ(x) =
u(λx). Notice that ûλ = λ−dûλ−1 . First suppose s ≥ 0. Then

||u||Hs(Rd) ∼ ||u||L2(Rd) + [u]Hs(Rd)
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in the sense of equivalence of norms/seminorms. Here [u]Hs is the norm given by

[u]Hs(Rd) =

∫
|û(ξ)|2|ξ|2s.

Changing variables, one computes that

||uλ||L2(Rd) = λ−d/2||u||L2(Rd),

and
[uλ]Hs(Rd) = λ−d/2+s[u]Hs(Rd).

If Theorem 1.1 is true for an exponent s > 0, then we should have

||u||L∞(Rd) = ||uλ||L∞(Rd) . ||uλ||Hs(Rd) ∼ λ−d/2||u||L2(Rd) + λ−d/2+s[u]Hs(Rd).

Taking λ → ∞ shows that the right-hand side must not go to 0, i.e. s ≥ d/2. So if s > 0,
then s ≥ d/2. Now if s < 0 and Theorem 1.1 were true for the exponent s, it would also be
true for s = 0, i.e. H0(Rd) = L2(Rd) embeds continuously into Hs(Rd) for any s < 0, which
is impossible since s ≥ d/2 > 0.

However, this still leaves open the critical exponent s = d/2, which we will need to
examine below.

Now we examine Theorem 1.2. There are two places in the Theorem where we could
hope to improve. The first is that is it necessary for s > 1/2? The second is that can we
find an trace T : Hs(Rd)→ Hs−ε(Rd−1) if ε < 1/2? Again we will try scaling and see what
happens. Suppose s, s′ ≥ 0. Fix u ∈ S(Rd) and set v = Tu ∈ S(Rd−1). Arguing as above,
if we have a trace T : Hs(Rd)→ Hs′(Rd−1), then we would have

λ(d−1)/2||v||L2(Rd−1) + λ(d−1)/2+s
′
[v]Hs′ (Rd−1) . λd/2||u||L2(Rd) + λd/2+s[u]Hs(Rd).

Multiply this expression by λ−d/2 to obtain the equivalent expression

λ1/2||v||L2(Rd−1) + λ1/2+s
′
[v]Hs′ (Rd−1) . ||u||L2(Rd) + λs[u]Hs(Rd).

Taking λ → ∞ and examining the growth rates of both sides shows that s ≥ 1/2 and
s ≥ 1/2+ s′. As above, from this we can deduce that there is no Trace map from Hs(Rd) to
Hs′(Rd) if s < 0 and s′ > 0. So the scaling argument proves the following: if T : Hs(Rd)→
Hs′(Rd) is a continuous Trace map, then either s ≥ 1/2 and s′ ≤ s − 1/2, or else s < 1/2
and s′ < 0. Again this leaves open the critical case s = 1/2.

The scaling arguments do not get us all the way, so we will need more. We now state
exactly what we are trying to prove.

Theorem 1.3. If s ≤ d/2 then there is no estimate of the form

||u||L∞(Rd) . ||u||Hs(Rd).

and
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Theorem 1.4. If s ≤ 1/2 and s′ ∈ R or else if s > 1/2 and s′ > s− 1/2 there is no Trace
map

T : Hs(Rd)→ Hs′(Rd−1).

We have so far partially proved these theorems. The full proof will come from constructing
an explicit counterexample. All the work is in the case d = 1, which is where we will start.
In this case the statements of the Theorems are equivalent, and in this case the Trace map
T is really the map into R given by evaluating at 0, which we will call eval0 (to see that the
Theorems are equivalent, it suffices to move around the point at which we are evaluating the
trace). We will prove the following proposition, which amounts to the case d = 1.

Proposition 1.5. There is no continuous extension of the map eval0 : S(R)→ R to a map
eval0 : H1/2(R)→ R.

Notice that in the proposition, the critical exponent s = 1/2 is ruled out.

Proof. Consider the function f(ξ) = (ξ log ξ)−1, defined for ξ ≥ 2. Then f ≥ 0, but
∫
R
f =

∞, indeed, ∫ ∞
2

f(ξ) dξ =

∫ ∞
log(2)

ξ−1dξ =∞.

On the other hand, f ∈ L2(〈ξ〉 dξ). Checking this amounts to showing that f ∈ L2(R) and
f ∈ L2(|ξ| dξ). Indeed, ∫

R

|f(ξ)|2 dξ ≤
∫ ∞
2

ξ−2dξ <∞

and ∫
R

|f(ξ)|2|ξ| dξ =
∫ ∞
2

ξ−1(log ξ)−2dξ =

∫ ∞
log(2)

ξ−2dξ <∞.

Let u ∈ L2(R) satisfy û = f . Then u ∈ H1/2(R) by definition. Let η be a Gaussian of
integral 1, and set ηε(x) = ε−1η(x/ε). Set uε = u ∗ ηε ∈ C∞(R) ∩ L2(R). The idea is that
uε → u in H1/2, but uε(0) → ∞, which means that there can be no extension of eval0 to a
continuous map from H1/2(R).

Indeed, ûε(ξ) = f(ξ)η̂(εξ). Since η̂ is a Gaussian and f ∈ L2(〈ξ〉 dξ), ûε(ξ) → û in
L2(〈ξ〉 dξ), i.e. uε → u in H1/2. Notice also that

uε(0) = (2π)−1
∫
f(ξ)η̂(εξ) dξ →∞,

since
∫
f(ξ) dξ =∞ and f ≥ 0.

Using this as our building block, we can prove Theorems 1.3 and 1.4.

Proof of Theorem 1.3. We will not use Proposition 1.5 verbatim, but will mimic the proof.
Set g(ξ) = (|ξ|d log |ξ|)−1 for |ξ| ≥ 2. Integrating in polar coordinates shows that∫

g(ξ) dξ = cd

∫ ∞
2

(rd log(r))−1rd−1 dr = cd

∫
f(r) dr =∞,
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where f is as in the proof of Proposition 1.5. Here cd is the surface area of Sd−1 ⊆ Rd.In a
similar fashion, ∫

|g(ξ)|2|ξ|ddξ = cd

∫
|f(r)|2|r| dr <∞.

It is also clear that ∫
|g(ξ)|2 dξ ≤ cd

∫
r≥2

r−d−1 dr <∞.

Let v satisfy v̂ = g. Arguing exactly as above, v ∈ Hd/2(Rd). If η is a radial Gaussian
and ηε(x) = ε−dη(x/ε), set vε = v ∗ ηε. Then as above, vε(0)→∞, but vε → v ∈ Hd/2(Rd).

Thus there is no estimate

||v||L∞(Rd) . ||v||Hd/2(Rd),

and since || · ||Hs(Rd) . || · ||Hd/2(Rd) for s < d/2, no estimate

||v||L∞(Rd) . ||v||Hd/2(Rd),

either.

Proof of Theorem 1.4. The scaling arguments carried out above show that there is no Trace
map Hs(Rd) → Hs′(Rd) whenever s > 1/2 and s′ > s − 1/2. So we need only prove that
there is no Trace map T : Hs(Rd)→ Hs′(Rd−1) if s ≤ 1/2. In fact we will prove something
stronger: there is no map T : Hs(Rd) → F(Rd−1) whenever F(Rd−1) is a normed space in
which S(Rd−1) embeds continuously. Since the inclusion H1/2(Rd) ⊆ Hs(Rd) is continuous
for s ≤ 1/2, it suffices to prove the case s = 1/2.

Proposition 1.5 already proves the case d = 1, since there is no norm in which eval0uε
can converge, as they are an unbounded sequence of real numbers. For the general case,
let g ∈ S(Rd−1), and set h(x′, xd) = g(x′)u(xd), hε(x′, xd) = g(x′)uε(xd). Here u,uε are the
functions described in the proof of Proposition 1.5. By construction, T (hε)(x′) = uε(0)g(x

′).
Thus if || · ||F(Rd−1) is a norm associated to F(Rd−1),

||T (hε)(x′)||F(Rd−1) = |uε(0)|||g||F(Rd−1),

where ||g||F(Rd−1 < ∞ since g ∈ S(Rd−1). We know that as ε → 0, this quantity → ∞. So
to complete the proof, we need only show that hε → h in H1/2(Rd).

This much is clear. Notice that

〈(ξ′, ξd)〉 . 〈ξ′〉〈ξd〉.

Indeed,

〈(ξ′, ξd)〉 ∼ 1 + |(ξ′, ξd)| ≤ 1 + |ξ′|+ |ξd| ≤ (1 + |ξ′|)(1 + |ξd|) ∼ 〈ξ′〉〈ξn〉.

Thus, since ĥ(ξ′, ξd) = ĝ(ξ′)û(ξd)

||h||2H1/2(Rd) ≤
∫ ∫

|ĝ(ξ′)|2〈ξ′〉|û(ξd)|2〈ξd〉 dξ′dξd
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≤
(∫
|ĝ(ξ′)|2〈ξ′〉 dξ′

)(∫
|û(ξd)|2〈ξd〉 dξd

)
= ||g||H1/2(Rd)||u||H1/2(R) <∞.

The same computation shows that hε ∈ H1/2(Rd) and hε → h in H1/2(Rd).
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